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Adjusting Solver Options  25 

The Solver process requires initial values for the variables and it is a good practice to set 

constraints on the values of the variables by specification of reasonable.  For example, if two peaks are 

used to deconvolute the feature of the line at pH =12 at 410 nm in Figure 1, one might constrain the 

center of the peak to 395 nm ≤ max ≤ 420.   

The error is measured at discrete intervals and therefore wide peaks will always benefit from more 30 

optimization.  The wide band at ca. 410 nm, for example, will be fit very well because information 

about this feature is contained in ca. 25 digitized points.  Conversely, small features may be reflected 

in only a much smaller number of digitized points and, for example, the shoulder at ca. 300 nm in 

Figure 1 is such a case and only affects a few points of the digitized spectrum.  Instead of finding all of 

the optimal parameters in one simulation over the entire spectrum range, a much better solution can 35 

be obtained by step-wise deconvolution.  In the first step, only the parameters of the three peaks in the 

low- region of the spectrum (i.e., 260 nm ≤ max ≤ 360 nm) are optimized based on the error function 

for that range only.  With those three bands now set, in the second step we optimized the parameters 

of the remaining three peaks in the high- region (360 nm ≤ max) based on the error function 

generated with the digitized points of the entire spectrum.   40 

The recommendation to use 50 – 100 data points between the left and right bounds is based on the 

authors’ experience.  Using fewer than 50 points (in the case of Figure 1 a step size of 10 nm) created a 

decent first approximation solution, but failed to give enough credibility to smaller features.  Using 

more than 100 points (step sizes of 2, 1, or 0.5 nm) did not aid the solution in any noticeable way.  In 

fact, when using considerably more points the Solver solution took longer and seemed to be more 45 

likely to find a poor solution.   

 
Worksheet Organization  

As was pointed out by the reviewers, we note that the templates laid out in Figures 3 and 6 are 

neither the only nor the shortest ways to approach those problems.   50 

In Figure 3, the maximum of any normal curve is a function of its standard deviation, and 

therefore only two columns are necessary to define each primitive (one needs only define the 
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wavelengths once).  The layout in Figure S3 uses the fact that the Excel formula for the maximum 

height of a normal curve is given by the expression 1/(sqrt(2*pi())*σ).  While this would simplify the 

worksheet illustrated in Figure 3, we believe that the stepwise process is easier for students to 55 

understand.   

Likewise in Figure 6, column AB is not necessary to complete this problem.  One could use the 

sumxmy2() function in Excel to achieve the same result with two columns instead of three.  This 

function takes the data from two columns (columns Z and AA in our case) and returns the sum of 

squares of the difference at each corresponding value.  The use of the sumxmy2() function does reduce 60 

the number of columns, but again, we believe that it is more instructive to present the method 

stepwise to an audience with varying mathematical skills. 

 

Figure S3:  Shortcut Version of Figure 3 

 A B 

1 λmax (Center) 255 

2 Height 0.4 

3 Width (std. dev.) 7.9 

4   

5 λ (nm) Normal Curve 

6 260 =($B$2*sqrt(2*pi())*$B$3)*NORM.DIST(A6, B$1, B$3, FALSE) 

7 =A6 + 5 =($B$2*sqrt(2*pi())*$B$3)*NORM.DIST(A7, B$1, B$3, FALSE) 

8 =A7 + 5 =($B$2*sqrt(2*pi())*$B$3)*NORM.DIST(A8, B$1, B$3, FALSE) 

… … … 

74 600 =($B$2*sqrt(2*pi())*$B$3)*NORM.DIST(A74, B$1, B$3,FALSE) 

 65 

Figure S6:  Shortcut Version of Figure 6 

 Z AA … AC 

5 Sum of Normed Digitized  Sum of Error Squared 

6 =SUM(ni(), i=1,2,…,n) from digitizer  =SUMXMY2(Z6:Z74, AA6:AA74) 

7 =SUM(ni(), i=1,2,…,n) …   

… … …   

73 =SUM(ni(), i=1,2,…,n) …   

74 =SUM(ni(), i=1,2,…,n) …   

 


