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Abstract We recently described a dynamical approach to the equilibrium problem that

involves the formulation of the kinetic rate equations for each species. The equilibrium

concentrations are determined by evolving the initial concentrations via this dynamical

system to their steady state values. This dynamical approach is particularly attractive

because it can be extended easily to very large multi-equilibria systems and the effects of

ionic strength also are easily included. Here we describe mathematical methods for the

determination of steady state concentrations of all species with the consideration of their

activities using several approximations of Debye–Hückel theory of electrolyte solutions.

We describe the equations for a system that consists of a triprotic acid H3A and its

conjugate bases. With these equations, two types of multi-equilibria systems were studied

and compared to experimental data. The first system is exemplified by case studies of

solutions of acetate-buffered acetic acid and the second system is exemplified by the

hydroxide titration of citric acid. The discussion focuses on the effect of ionic strength on

pH and on the amplification of acidity by ionic strength. Ionic strength effects are shown to

cause significant deviations from the widely used Henderson–Hasselbalch equation.

Keywords Equilibrium � Ordinary differential equations � Dynamical approach � Acids/

bases � Ionic strength � Activity coefficient
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1 Introduction

It is a fundamental problem in chemistry to calculate the pH of a buffer solution of known

constituents and initial conditions. It is a related and important problem to calculate the

concentration of each species at equilibrium corresponding to a pH value and initial

conditions. Ionic strength affects these equilibrium concentrations [1, 2]. While species

concentrations can be determined spectroscopically, it is the activity, however, which

determines the kinetic behavior of a species and, hence, the multi-equilibria composition.

The activity a(S) of a species S is related to its concentration [S] via the activity coefficients

fz(I) which depend on the absolute value of the charge z of species S and on the ionic

strength I of the solution, a(S) = fz (I)�[S] (vide infra). Even though the solution chemistry

community is well aware of the concept of ionic strength effects, nevertheless, it is

commonly assumed that a(S) & [S] to simplify the numerical solution of an equilibrium

system and with the implied suggestion that activity coefficients f are not that different

from unity. It is now possible to solve multi-equilibria with the proper consideration of

activities, the usual assumptions can be tested, and it is found that the assumption may not

hold, not even approximately, for electrolyte solutions that contain multiply charged

species even at modest ionic strength [3–6]. In particular, we will show that activities do

not only affect the argument of the logarithm in the widely used Henderson–Hasselbalch

equation [7] but also alters the slope (s = 1) and the intercept (r = 1) significantly:

pH ¼ r pKa þ s log10

a Ac�ð Þ
a HAcð Þ

Citric acid and its conjugate bases (including the di- and trianions) are important in many

chemical systems, ionic strength effects of citric acid systems have been studied and

illustrate the point in a compelling fashion. Citric acid is known as an important metabolic

intermediate in the ATP-producing citric acid cycle [8] which occurs inside the mito-

chondrial matrix at pH = 7.7 [9]. The ionic strength of the mitochondrial matrix can be up

to 0.2 mol�L-1 and has been shown to have a strong impact on the electron transport chain

[10]. The complexation constants of sodium ions with the various conjugate anions of citric

acid (dihydrogen citrate, monohydrogen citrate) have been experimentally determined at

various ionic strengths [11]. Citric acid is also part of a commonly used buffer system

[12–15]. Citric acid can participate in reactions and some examples include the synthesis of

pyrroles with citric acid catalysis [16], the important Pechini sol–gel method of synthe-

sizing lithium–niobium powders using citrate as reducing agent [17–19], and the synthesis

of gold nanoparticles by reduction of auric acid with citrate [20]. A citrate-rich environ-

ment has been found to speed up enzyme kinetics compared to a crowded, polymer rich

environment [21]. Addition of calcium citrate into cells decreases the concentrations of

reactive oxygen species in part because citrate itself has antioxidant properties [22] but also

because citrate increases the activity of antioxidant enzymes, decreases nitric oxide con-

centration, and impacts gene expression [23]. Citrate has also been shown to inhibit cis-

platin binding to DNA over a wide pH range [24].

We have recently compared the traditional equilibrium approach to the alternative

dynamical approach as a way to calculate species concentrations at equilibrium [25]. The

traditional equilibrium approach uses the definitions of the equilibrium constants

(1 ?
P

m nm equations) together with conservation of mass (m equations) and conservation

of charge (1 equation) to determine the concentrations of the (2 ?
P

m nm ? m) species.

For multi-equilibria systems there is no explicit solution to this system of equations and,
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thus, numerical methods must be employed. Usually, the (2 ?
P

m nm ? m) equations are

reduced to a single high-degree polynomial of one species (e.g., [H?]). The chemically

meaningful root of the polynomial is approximated and the concentrations of the other

species are computed subsequently. The alternative dynamical approach is based on the

kinetic rate equations for each species and this approach is commonly employed in bio-

chemical analysis [26]. General mass action kinetics theory [27–29] allows one to for-

mulate a system of ordinary differential equations (ODEs) for the time-dependent

concentrations of the species involved in the reactions. We have shown how the steady-

state solutions can be determined by solving this system of differential equations upon

specification of the reaction rate constants and the initial concentrations [25].

While the conceptual framework for this dynamical approach is somewhat more

sophisticated than the equilibrium approach, it has several advantages: there are well-

established numerical methods available for the computation of all species as functions of

time and the dynamical method scales easily with the addition of more types of acids.

Moreover, the effects of ionic strength are easily included in the dynamical approach and it

is the purpose of the current paper to describe the dynamical approach with consideration

of several approximate extensions of the Debye–Hückel theory of electrolyte solutions.

Specifically, we consider here the general case of the coupled equilibria given by Eqs. 1–4.

Perhaps most importantly, the dynamical method lays the foundation for approaching

dynamical problems in chemistry including oscillating reactions, pattern formations in

reaction–diffusion systems, and many other processes in all areas of science and engi-

neering [30–35].

H2O � Hþ þ OH� Kw ¼ Hþ½ � OH�½ � ð1Þ

H3A � Hþ þ H2A� K11 ¼ Hþ½ � H2A�½ �= H3A½ � ð2Þ

H2A�
� Hþ þ HA2� K12 ¼ Hþ½ � HA2�� ��

H2A�½ � ð3Þ

HA2�
� Hþ þ A3� K13 ¼ Hþ½ � A3�� ��

HA2�� �
ð4Þ

HA � Hþ þ A� K11 ¼ Hþ½ � A�½ �= HA½ � ð5Þ

Equations 1–4 describe mixtures of a triprotic acid H3A (acid 1) and its salts MH2A,

M2HA and M3A, where M represents an arbitrary singly-charged, inert, non-aggregated

metal cation and the corresponding dissociation constants are Kw, K11, K12, and K13. The

equilibrium constant Kw is the ionic product of water, the acidity constants Kmn describe

the equilibria for the nth dissociation of n-protic acid m. The dynamical approach to the

system of Eqs. 1–4 allows for the study of buffered acids H3A, H2A and HA and their

titrations with MOH. A simple buffered system is exemplified by the acetic acid–acetate

buffer (example 1, Eqs. 1 and 20) and a titration is exemplified by the hydroxide titration of

citric acid (example 2). We studied these two simple systems to compare and confirm the

dynamical method against experimental data [36]. We also compare our results to the few

previously reported data computed with the equilibrium approach [37]. The discussion

focuses on the effect of ionic strength on pH and on the amplification of acidity by ionic

strength as well as the difference between the activities and concentrations of the inter-

mediate deprotonation species.
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2 Mathematical Methods

2.1 Dynamical Approach to Multi-Equilibria

General mass action kinetics theory [27–29] leads to the system of ordinary differential

Eqs. 5–10 for the time-dependent concentrations of the species in reactions 1–4. We

recently described the formulations of the differential equations for an H2A/HB system

[25] so we can be brief here.

d Hþ½ �
dt

¼ kwf � kwb Hþ½ � OH�½ � þ k11f H3A½ � � k11b Hþ½ � H2A�½ �

þ k12f H2A�½ � � k12b Hþ½ � HA2�� �
þ k13f HA2�� �

� k13b Hþ½ � A3�� � ð5Þ

d OH�½ �
dt

¼ kwf � kwb Hþ½ � OH�½ � ð6Þ

d H3A½ �
dt

¼ �k11f H3A½ � þ k11b Hþ½ � H2A�½ � ð7Þ

d H2A�½ �
dt

¼ k11f H3A½ � � k11b Hþ½ � H2A�½ � � k12f H2A�½ � þ k12b Hþ½ � HA2�� �
ð8Þ

d HA2�� �

dt
¼ k12f H2A�½ � � k12b Hþ½ � HA2�� �

� k13f HA2�� �
þ k13b Hþ½ � A3�� �

ð9Þ

d A3�� �

dt
¼ k13f HA2�� �

� k13b Hþ½ � A3�� �
ð10Þ

d Hþ½ �
dt

¼ kwf � kwb Hþ½ � OH�½ � þ k11f HA½ � � k11b Hþ½ � A�½ � ð50Þ

d HA½ �
dt

¼ �k11f HA½ � þ k11b Hþ½ � A�½ � ð70Þ

Every equilibrium reaction is described by two reaction rate constants; rate constant kf

for the forward reaction and rate constant kb for the backward (reverse) reaction. These

reaction rate constants are related via the equilibrium constant K by K = kf/kb. We refer to

the reaction rate constants of reactions 1–4 using the subscript of the respective equilib-

rium constant and appending either ‘‘f’’ or ‘‘b’’ for forward or backward. Hence, the

reaction rate constants kwf and kwb describe the autoionization of water (Eq. 1). We refer to

the reaction rate constants for the forward and backward reactions of the first dissociation

of H3A (acid 1, Eq. 2) as k11f and k11b, respectively, and to the reaction rate constants for

the forward and backward reactions of the dissociation of H2A-(Eq. 3) as k12f and k12b,

respectively, and k13f and k13b are the reaction rate constants for the forward and backward

reactions, respectively, of the dissociation of HA2- (Eq. 4).

In the present context, we are interested in the determination of the concentrations of all

species in aqueous solution at equilibrium at 298.15 K, and not in the transient kinetics of

reaching the equilibrium. Hence, once the equilibrium constants are specified, we can

freely choose in each case either the forward or backward reaction rate constant and then

use the equation K = kf/kb to determine the other. For all numerical computations in this

paper, we used kwf = 10-3, Kw = 10-14, k11f = 102, k12f = 102, k13f = 102, and
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k2f = 102. In addition, all runs in example 1 used the initial concentrations

[H?] = [OH–] = 10-7 for the dissociation of water. For example 2, we used the same

initial proton concentration and varied [OH-] = [OH-]0. The remaining initial settings are

specified below.

2.2 Dynamical Approach to Multi-Equilibria Accounting for Ionic Strength

The concentration quotients of Eqs. 1–4 describe the equilibrium constants for highly

dilute solutions in which the overall ion concentration is negligible. In more concentrated

solutions Eqs. 1–4 need to be replaced by the thermodynamic equilibrium constants in

which all concentrations [S] are replaced by activities a (S) and one obtains Eqs. 11–14

[38]:

Kh
w ¼ a Hþð Þa OH�ð Þ ¼ f 2

1 K
I
w ð11Þ

Kh
11 ¼ a Hþð Þa H2A�ð Þ=a H3Að Þ ¼ f 2

1 K
I
11 ð12Þ

Kh
12 ¼ a Hþð Þa HA2�� �

=a H2A�ð Þ ¼ f2K
I
12 ð13Þ

Kh
13 ¼ a Hþð Þa A3�� �

=a HA2�� �
¼ f1f3=f2K

I
13 ð14Þ

Kh
11 ¼ a Hþð Þa A�ð Þ=a HAð Þ ¼ f 2

1 K
I
11 ð15Þ

In the Debye–Hückel theory of electrolyte solutions the activities a(S) are related to the

concentrations [S] via the activity coefficients fz(I) that depend on the absolute value of the

charge z of species S and on the ionic strength I. The concentration quotient of the nth

dissociation of acid m as a function of ionic strength will be denoted as KI
mn and the value

will become equal to the equilibrium constant Kmn as the ionic strength approaches zero

(Eq. 15). Ionic strength is defined by Eq. 16 and takes the form of Eqs. 17 or 170 for the

present cases.

Kmn ¼ lim
I!0

KI
mn ð15Þ

I ¼ 0:5
X

i

z2
i cðSiÞ ð16Þ

I ¼ 0:5 Hþ½ � þ OH�½ � þ H2A�½ � þ 4 HA2�� �
þ 9 A3�� �

þ OH�½ �0
� �

ð17Þ

I ¼ 0:5 Hþ½ � þ OH�½ � þ A�½ � þ A�½ �0
� �

ð170Þ

The term [OH–] accounts for the cation of the hydroxide salt in example 2. The term

[A-]0 accounts for the cation of the acetate salt in example 1. The relation between activity

coefficient and ionic strength is provided by various forms of the Debye–Hückel equation

[39, 40] including the Debye–Hückel limiting law (DHLL, Eq. 18.1), the extended Debye–

Hückel equation (EDHE, Eq. 18.2), the Güntelberg variant [41] of EDHE (Eq. 18.3), and

by Davies’s extension [42] (Eq. 18.4) of Güntelberg’s equation (b = 0).
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log10 fzð Þ ¼ �Az2
ffiffi
I

p
DHLL; if I\10�2:3 mol�L�1 ð18:1Þ

log10 fzð Þ ¼ �Az2

ffiffi
I

p

1 þ Ba
ffiffi
I

p EDHE; if I\10�2:3 mol�L�1 ð18:2Þ

log10ðfzÞ ¼ �Az2

ffiffi
I

p

1 þ
ffiffi
I

p G€untelberg; if I\0:1 mol�L�1 ð18:3Þ

log10 fzð Þ ¼ �Az2

ffiffi
I

p

1 þ
ffiffi
I

p � bI

� 	

Davies; if I\0:5 mol�L�1 ð18:4Þ

The parameters A and B are the Debye–Hückel coefficients A ¼ e2B= 2:3038pe0erkTð Þ

and B ¼ 2e2NL

e0erkT

n o0:5

(Avogadro’s number NL, electronic charge e, static dielectric constant

(relative permittivity) of water e, Boltzmann’s constant k, temperature T) and a is an

adjustable parameter depending on the size of the ion (in Å). For water at room temper-

ature A & 0.5085 and B & 0.3281 9 10-8 [39] and we employed A = 0.51 [40]. The

parameter b in the Davies equation was set to b = 0.2 L�mol-1 [42] and, in a few cases, we

will also employ b = 0.1 L�mol-1 for reasons given below. The Davies equation is

believed to give a possible error of 3% at I = 0.1 mol�L-1 and 10% at I = 0.5 mol�L-1

[40].

With the activity coefficient f1(t) and f2(t) for singly and doubly charged species,

respectively, the ODEs of Eqs. 5–10 become:

d Hþ½ �
dt

¼ kwf � kwbf
2
1 Hþ½ � OH�½ � þ k11f H3A½ � � k11bf

2
1 Hþ½ � H2A�½ � þ k12f f1 H2A�½ �

�k12bf1f2 Hþ½ � HA2�� �
þ k13f f2 HA2�� �

� k13bf1f3 Hþ½ � A3�� �
ð19Þ

d OH�½ �
dt

¼ kwf � kwbf
2
1 Hþ½ � OH�½ � ð20Þ

d H3A½ �
dt

¼ �k11f H3A½ � þ k11bf
2
1 Hþ½ � H2A�½ � ð21Þ

d H2A�½ �
dt

¼ k11f H3A½ � � k11bf
2
1 Hþ½ � H2A�½ � � k12f f1 H2A�½ � þ k12bf1f2 Hþ½ � HA2�� �

ð22Þ

d HA2�� �

dt
¼ k12f f1 H2A�½ � � k12bf1f2 Hþ½ � HA2�� �

� k13f f2 HA2�� �
þ k13bf1f3 Hþ½ � A3�� �

ð23Þ

d A3�� �

dt
¼ k13f f2 HA2�� �

� k13bf1f3 Hþ½ � A3�� �
ð24Þ

d Hþ½ �
dt

¼ kwf � kwbf
2
1 Hþ½ � OH�½ � þ k11f HA½ � � k11bf

2
1 Hþ½ � A�½ � ð25Þ

d HA½ �
dt

¼ �k11f HA½ � þ k11bf
2
1 Hþ½ � A�½ � ð26Þ
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The numerical solution of Eqs. 19–24 (190, 20, 210) determines the concentrations of all

species at equilibrium, because they satisfy the equilibrium expressions of Eqs. 11–14 (11

and 120) which account for the effects of ionic strength at equilibrium.

2.3 Numerical Determination of Steady State Concentrations

An effective method to determine the steady state concentrations for a given set of initial

concentrations simply involves the use of a numerical method [43] to approximate the

solutions of the differential equations forward in time until the computed concentrations

remain unchanged up to some pre-specified accuracy over some pre-specified time interval.

We approximated solutions of the system of differential equations using the Mathematica

[44, 45] solver NDSolve [46]. It is not possible to conclude with absolute certainty that an

equilibrium was indeed reached at the end of the integration of the dynamic equations.

However, we showed previously [25] that, for the dynamic Eqs. 5–10 (50, 6 and 70)
describing the equilibria of reactions 1–4 (1 and 20), that the equilibrium approach and the

dynamic approach produce that same result. Importantly, we can be confident in the

computed values because of their excellent agreement with the measured data.

3 Results and Discussion

3.1 Example 1: Acetate-Buffered Acetic Acid

We studied simple acetate buffered acetic acid systems to compare our results (Table 1) to

published experimental data [36]. In addition, we computed results for a series of solutions

with [HAc]0 = 0.051 mol�L-1 and evaluated the system of dynamical Eqs. 50, 6 and 70

with 190, 20–210 for each new initial concentration of acetate salt ranging from pure acetic

acid to aqueous acetic acid containing up to 0.104 mol�L-1 of added acetate, i.e., twice the

concentration of acetic acid. The results of these calculations are shown in Figs. 1 and 2.

Table 1 shows the data computed with the Davies method with b = 0.1 L�mol-1. A

more extensive Table S1 is provided as part of Supplementary Material and also lists data

computed with the values b = 0 and b = 0.2 L�mol-1. The value b = 0.1 L�mol-1 was

used by Perrin and Dempsey [36] (p. 7, Eq. 2.11) with reference to an early paper by

Davies [47] and also was employed in Ref. [37]. However, we note that Davies consis-

tently employed b = 0.2 L�mol-1 in his papers [42, 47]. The data (in Table S1) show that

the pH values computed with any one of the Debye–Hückel methods give just about the

same results (differences below 0.1).

Table 1 contains the values pHcon = -log10([H?]) computed based on the proton

concentrations and the values pHact = -log10{a(H?)} computed with the proton activities.

Experimental methods of pH determination rely on indicator equilibria or electrode

equilibria and thus measure proton activity. Consequently, the experimental data reported

in Table 1 need to be compared to computed pHact values. The pHact values computed with

the DH methods are generally in better agreement with the experimental measurements

(average absolute deviation of 0.032 ± 0.030) than the data computed without consider-

ation of ionic strength (average absolute deviation of 0.180 ± 0.046).

Figure 1 shows plots of the pHact of the solution as a function of the initial acetate

concentration and as a function of log10{a(Ac-)/[HAc]} to illustrate a Henderson–
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Fig. 1 Computed pHact values of acetate-buffered acetic acid. Top pHact as a function of added acetate.
Bottom pHact as a function of log10{a(Ac-)/[HAc]} = -log10{[HAc]/a(Ac-)}. Line color represents
approximations to the Debye–Hückel (DH) theory: I = 0 (top curve in both plots, blue,
pHact = 4.9115 ? 1.1067 log10{a(Ac-)/[HAc])}, Davies equation with b = 0.1 L�mol-1 (middle curve
in both plots, purple, pHact = 4.8591 ? 1.0633 log10{a(Ac-)/[HAc])} or b = 0.2 L�mol-1 [lowest curve in
both plots, green, pHact = 4.8106 ? 1.0336 log10{a(Ac-)/[HAc]}, overlaps with the Güntelberg curve,
pHact = 4.8107 ? 1.0336 log10{a(Ac-)/[HAc]}] (Color figure online)
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Hasselbalch type equation (Eq. 25a). Analogous plots for pHcon are shown in Fig. S1 in the

Supplementary Material.

pHcon ¼ pKa þ log10

Ac�½ �
HAc½ � ð25cÞ

pHact ¼ pK 0
a þ s log10

a Ac�ð Þ
a HAcð Þ ð25aÞ

The plots show a linear relationship between pHact and log10{a(Ac-)/[HAc]} which is

expected. The curves calculated with ionic strength effects all lie below the curve calcu-

lated without ionic strength effects, which is also expected. Note, however, that the pHact

where log10{a(Ac-)/[HAc]} = 0 is well above pKa = 4.76 for all those curves (Eq. 25a);

pK
0
a [ pKa and s[ 1. With decreasing ionic strength, the curves coalesce and approach the

Henderson–Hasselbalch equation (Eq. 25c). This condition is only seen in Fig. S1 where

pHcon is plotted against log10([Ac-]/[HAc]) for the case of no ionic strength effects.

The concentration quotient is defined as KI
a = [H?][Ac-]/[HAc] = Q, and Fig. 2

shows the dependence of the negative logarithm of this concentration quotient on ionic

strength. The horizontal line at the pKa value of acetic acid serves as a reference; this is the

limit of -log10(KI
a) as the value of I approaches zero. Figure 2 clearly shows that the

concentration quotient increases with ionic strength, i.e., the –log10(Q) curves all are below

the blue reference line. The ionic strength curves in Fig. 2 do not extend all the way to

I = 0 and they never reach –log10(Q) = pKact because acetic acid will dissociate to some

degree in aqueous solution and create a non-zero I even in the absence of any added salt.

Note that the order of the curves does not follow the size of the b value; the b = 0.2

L�mol-1 curve (green) lies between the b = 0.1 L�mol-1 curve (purple) and the b = 0

curve (red).

Fig. 2 Ionic strength effects on species concentration in acetate-buffered acetic acid. Negative logarithm of
concentration quotient {-log10(Q)} as a function of ionic strength with Q = Ka

I = [H?][Ac-]/[HAc]. Line
color represents various approximations to the Debye–Hückel (DH) theory: I = 0 (blue, horizontal line for
pKa(HAc) and, from top to bottom, Davies with b = 0.1 L�mol-1 (purple) or b = 0.2 L�mol-1 (green), and
Güntelberg (red) (Color figure online)
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Effectively, an increase of the ionic strength makes an acid more acidic. This increase of

the acidity can be easily understood considering the dynamic equations and the role of the

activity coefficients. Within the I range in which the Davies equation is applicable, the

activity coefficient f will always be less than one, its value will steadily decrease as the

ionic strength increases (Eq. 18), and the decrease is steepest in the low I region. In the

dynamical equation for proton concentration (Eq. 190), the only terms without activity

coefficients are forward rates which increase with proton concentration. In contrast,

activity coefficients reduce the backward rates and slow the protonation of all conjugate

bases.

3.2 Example 2: Hydroxide Titration of 0.2 Mol�L21 Citric Acid

The titration of citric acid with hydroxide was studied to confirm the dynamical method

against the experimental results of Perrin and Dempsey [36] and to examine activity effects

for a triprotic acid. We employed the same pKa values of 3.13, 4.76, and 6.40 for citric acid

as in Ref. [37] and evaluated the multi-equilibria for the fixed concentration of citric acid at

0.2 mol�L-1 and various initial concentrations of hydroxide up to 0.59 mol�L-1. The

results are listed in the lower part of Table 1 and illustrated in Figs. 3, 4, 5. To help with

the interpretation of the data, we also computed the respective results for a triprotic model

acid with pKa values of 3, 6, and 9, and these results are shown in Figs. S7, S8, and S9. The

differences between the pKa values of citric acid are about 1.6 {DpKa(1,2) = pK12--

pK11 = 1.63; DpKa(2,3) = pK13-pK12 = 1.64} and the pKact values of the triprotic model

acid are further apart {DpKact(1,2) = DpKact(2,3) = 3}.

The data in Table 1 show that the consideration of ionic strength becomes imperative

and that the choice among the various Debye–Hückel methods matters in this case. The

average absolute deviations from the measured pHact values and their standard deviations

Fig. 3 Computed pHact values of hydroxide titration of 0.2 mol�L-1 citric acid as a function of added
hydroxide. From top to bottom (at [OH-]0[ 0.3 mol�L-1): I = 0 (blue), Davies with b = 0.2 L�mol-1

(green), experimental data (orange) overlay Davies curve with b = 0.1 L�mol-1 (purple) and Güntelberg
(b = 0, red) (Color figure online)
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are: 0.56 ± 0.31 (I = 0), 0.09 ± 0.05 (b = 0), 0.05 ± 0.05 (b = 0.1 L�mol-1), and

0.12 ± 0.07 (b = 0.2 L�mol-1).

Figure 3 shows the pHact of the solution at equilibrium as a function of [OH-]0. While

all the curves start and end more or less at the same point, the curves for all of the DH

approximations are considerably lower than the I = 0 curve. This is consistent with the

titration curve in Fig. 1. As with Fig. 2, we find that the pHact values decrease in the order

pH (Davies, b = 0.2 L�mol-1)[ pH (Davies, b = 0.1 L�mol-1)[ pH (Güntelberg,

b = 0) for a given value of added hydroxide. The divergence becomes significant around

[OH-]0 & 0.25 mol�L-1 and it is especially large in the region [OH-]0 & 0.54 mol�L-1.

Note that the b = 0.1 L�mol-1 curve (purple) provides an almost perfect match of the

experimental data (orange curve) for pH[4. In the region [OH-]added C0.26 mol�L-1 the

average absolute deviations from the measured pHact values and their standard deviations

are 0.10 ± 0.07 (b = 0), 0.02 ± 0.03 (b = 0.1 L�mol-1), and 0.13 ± 0.08 (b = 0.2

L�mol-1).

In Fig. 4 -log10(Q) is shown as a function of I for the different DH approximations,

much like Fig. 2 for the acetate buffer. The horizontal lines mark the pKa values of citric

acid and serve as a reference. Consistent with the findings from Fig. 2, the DH approxi-

mation curves are always lower than the pKa and never reach the pKa line. Ionic strength

makes an acid more acidic and the example of citric acid illustrates that the increase in

acidity is larger for the higher dissociations. At I = 0.1 mol�L-1, for example, the Davies

(b = 0.2 L�mol-1) method shows that the value of -log10(Q) is reduced by 0.22, 0.44, and

0.66, respectively, for the first, second, and third dissociation, respectively. These findings

are consistent with another study that showed that increasing ionic strength itself leads to

increased deprotonation of phthalic acid [48].

Figure 5 shows the concentrations of citric acid and of all of its deprotonated species as

a function of pH. We first discuss the major effects of ionic strength by comparison of one

Fig. 4 Hydroxide titration of 0.2 mol�L-1 citric acid. Negative logarithm of concentration quotient
{-log10(Q)} as a function of ionic strength (I) with Q = Ka

I = [H?][B-]/[HB]. Line color represents acid
dissociation number: first (blue, bottom bundle), second (red, center bundle), and third (green, top bundle).
Marker shape represents DH method: I = 0 (no marker), Güntelberg (triangle), Davies with b = 0.1
L�mol-1 (circle) or b = 0.2 L�mol-1 (square) (Color figure online)
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Davies curve to the I = 0 curve (top), and we then compare differences between the DH

approaches (bottom).

The graph on top of Fig. 5 shows the curves computed with the Davies method with

b = 0.2 L�mol-1 (dash) and for I = 0 curve (solid) for all relevant species. The Davies

curves all are noticeably shifted to the left of the I = 0 curves, that is, the dissociations of

all acids occur at a relatively lower pH when ionic strength is considered. This observation

is consistent with the finding in example 1. It is one consequence that the maxima of the

Davies curves for H3A (blue), H2A– (red), and HA2- (green) all are shifted to the left and

Fig. 5 Species concentrations in hydroxide titration of 0.2 mol�L-1 citric acid. With maxima occurring
from left to right: concentration of H3A (blue), H2A- (red), HA2- (green) and A3- (orange) as a function of
pHact. Line style indicates the Debye–Hückel approximation: I = 0 (solid), Güntelberg (long dash), Davies
with b = 0.1 L�mol-1 (dotted) or b = 0.2 L�mol-1 (short dash). Top ionic strength effect on concentrations.
Bottom effect of the DH approximations on concentrations. Curves terminating at I = 0.9 mol�L-1 (black)
show ionic strength calculated from the three DH methods (Color figure online)
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lower compared to the I = 0 curves. The Davies curve for [A3-] is always higher than the

I = 0 curve. This is expected because the fully deprotonated species A3- is the product of

all previous acid dissociations and, since ionic strength makes acids more acidic, it should

also increase the concentration of the conjugate base.

When the concentrations of species are graphed against pHact instead of pHcon the peak

concentrations are shifted to higher pH values (Fig. S5). These higher pH values reflect the

pH values measured by standard industrial pH meters and is due to the fact that the activity

of hydrogen ions is lower than its concentration.

The relative heights of the maxima of [H2A-] and [HA2-] depend on the difference

between the adjacent pKa values. Large differences between the three pKa values allows for

high maxima and this is illustrated for the triprotic model acid in Fig. S4. In that case, there

will be two major species present in every pH region, i.e., H3-xA
x- and H2-xA

(x?1)-

(x = 0, 1, 2). In contrast, smaller DpKa values diminish the maximum heights of the

[H2A-] and [HA2-] curves and each anion H2-xA
(x?1)- (x = 0, 1) will be accompanied by

significant concentrations of both its conjugate acid and base.

We now consider the graph on the bottom of Fig. 4 and examine the differences

between the three DH approximations. This graph also contains ionic strength curves for

the three DH approximations as a function of pH using the secondary y-axis. We find that

the curves are shifted to the left and this shift increases in the order Davies equation

(b = 0.2 L�mol-1)\Davies equation (b = 0.1 L�mol-1)\Güntelberg equation (b = 0).

All three approximation methods give almost the same concentration curves for citric acid.

The concentration curves of dihydrogen citrate diverge markedly only on the high-pH side

of their respective curves, whereas the concentration curves of monohydrogen citrate

diverge even before the maximum is reached (i.e., at pH & 3.7) and the divergence grows

drastically with increasing pH. Finally, the [A3–] curves diverge almost immediately and

stay apart until pH[ 7. These results support the recommendation that the Güntelberg

approximation is valid for I\ 0.1 mol�L-1 (i.e., pH & 3.3 in Fig. 4). Note that I reaches

0.5 mol�L-1 around pH & 5.0 and the Davies approximation depends greatly on the

b value as early as the trianion grows in.

The ionic strength curves show similar patterns of divergence and convergence. The

ionic strength curves stay close together through the first dissociation of citric acid and they

start to diverge in the region where [H2A-] & [HA2-] and [A3-] begins to grow in at

I & 0.2 mol�L-1. Maximal divergence occurs in the region where [HA2-] & [A3-].

Finally, in the pH C 7 region, only the trianion remains in a significant concentration and

the ionic strength curves converge. In the high pH regions the trianion is the dominant

species in solution and its concentration approaches the initial citric acid concentration of

0.2 mol�L-1. Since ionic strength itself is calculated in the same way, it is dependent only

on the equilibrium concentrations that result from the different DH approximations. It is

not surprising that the appearance of the trianion marks the beginning of the region of

greatest divergence in the DH concentration curves. In the dynamical equations (cf.

Eqs. 19–24) each species concentration is multiplied by an activity coefficient fi which

depends on ionic strength, and the ionic strength is highly sensitive to the trianion con-

centration (factor 9 in Eqs. 19, 23, and 24).

Figure 6 compares species concentrations and species activities of citric acid and its

conjugate bases as a function of pHact using the Davies equation b = 0.1 L�mol-1 method.

Obviously, the concentration of citric acid is equal to its activity. It is also clear that the

activities for all charged species are lower than their concentrations because activity

coefficients always have to be less than one for this system. The difference between the

concentration of a species and its activity increases with the degree of deprotonation from
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H2A- via HA2- to A3- and this is shown in Fig. 6. What we find to be remarkable about

Fig. 6 is the fact that the ratio between activity and concentration can be very small and

nowhere near unity. For example, the maximum HA2- concentration occurs at

pHact = 3.56 and f = 0.31. For the A3- species the ratio of activity to concentration is

even smaller and, for example, at pHact = 6.51 we find f = 0.015. The numerical data

presented here show in a compelling fashion that the frequently made assumption of

c(S) & a(S) is clearly not warranted.

There are two reasons for the rather small activity coefficients in the higher pH range.

First, the activity coefficient decreases with the square of the ion charge (Eq. 18). Second,

and here is the important synergism, the activity coefficient decreases with ionic strength

and the ionic strength itself (Eq. 16) is greatly increased in the higher pH range where the

higher charged species are dominant in solution.

It is important to remember that the concentration of a species is what is detected by

spectroscopic methods whereas the activity of the species is what determines the kinetic

effect of the species. In the region of high pH and high ionic strength the activities of all

species are very low, but the concentration of the trianion A3- is quite large. Even the

dianion HA2- shows a low activity at its maximum concentration around pH = 5. The

disparity between concentration and activity at higher pH values and ionic strengths means

that the spectroscopic determination of a concentration would have very little bearing on

the actual kinetic effect of the charged species.

Fig. 6 Difference between species concentrations and species activities in hydroxide titration of
0.2 mol�L-1 citric acid. With maxima occurring from left to right: concentrations of H3A (solid blue),
H2A- (solid red), HA2- (solid green) and A3- (solid orange) and activities of H2A- (dashed red), HA2-

(dashed green) and A3- (dashed orange), respectively, as a function of pHact. All lines calculated using the
Davies equation with b = 0.1 L�mol-1 approximation. The solid black curve shows ionic strength calculated
from the Davies equation with b = 0 L�mol-1 using the secondary y-axis shown on the right side of the plot
(Color figure online)
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4 Conclusions

The dynamical approach to the multi-equilibria problem involves the formulation of the

kinetic rate equations for each species and the equilibrium concentrations are determined

by evolving the initial concentrations via this dynamical system to their steady state. This

dynamical approach is particularly attractive because it can be extended easily to very

large multi-equilibria systems without the difficulty of reducing the equilibrium equations

to a single high order polynomial and its numerical solution. There is another advantage of

the dynamical approach that the effects of ionic strength also are easily included, and we

have demonstrated this advantage with the present paper.

We described mathematical methods for the determination of steady state concentrations

of all species with the consideration of their activities using several approximations of the

Debye–Hückel theory of electrolyte solutions. The kinetic rate equations were provided for a

multi-equilibria system consisting of a triprotic acid H3A and its conjugate bases (Eqs. 1–4).

The dynamical approach to the system of Eqs. 1 and 20 is exemplified by solutions of

acetate-buffered acetic acid (example 1) and the system of Eqs. 1–4 is exemplified by the

hydroxide titration of citric acid (example 2). These two examples were studied to compare

the results of the dynamical method with available experimental data. Example 1 presents a

low-I scenario and for this case the pH values computed with any one of the DH methods

closely agree with each other and they are in better agreement with experiment than the

data computed without consideration of ionic strength. On the other hand, example 2

presents high-I scenarios and the choice among the various Debye–Hückel methods

matters in this case. The pH values computed with the Davies method and

b = 0.1 L�mol-1 show the best agreement with experiment, and the match is especially

remarkable in the I C 0.25 mol�L-1 region.

A common aspect of the discussion of both examples concerns the amplification of

acidity by ionic strength. The computed concentration quotients demonstrate in a com-

pelling fashion that an increase of ionic strength leads to an increase of the acidity of every

acid. This increase of the acidity can be easily understood considering the dynamic

equations and the role of the activity coefficients. It was also shown in Fig. 6 that, in higher

pH ranges and higher ionic strengths, the activities of doubly and triply charged species are

considerably lower than their concentrations and the assumption that activity is approxi-

mately equal to concentration cannot be made in these cases.

There is, however, deviation between our calculated pH values and the experimental

values as can be seen in Fig. 3. The model for ionic strength that we used was a simple

model that did not include some possible components of salt solutions. Specific interac-

tions between species in solution could be occurring which would result in behavior not

consistent with our treatment of ionic strength effects [38]. Ionic strength can also have

effects on uncharged species that we did not consider in our model [49]. Even with these

possible effects in salt solutions our calculated data agrees well with the experimental data,

especially at higher ionic strength values.

With the equations provided here and some elemental knowledge of computing soft-

ware, the fast and accurate computation of equilibrium concentrations becomes feasible

with the inclusion of the effects of ionic strength. In particular, we can now study multi-

equilibria solutions with wide ranges of composition and ionic strength to improve on the

parameters of the Debye–Hückel approximations and/or to explore conceptually improved

theories of electrolyte solution.
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5 Supplementary Material

9 pages are available: extended version of Table 1, two figures showing computed pHcon

values of acetate-buffered acetic acid and of hydroxide titration of 0.2 mol�L-1 citric acid,

and a figure showing species concentrations in the hydroxide titration of 0.2 mol�L-1 citric

acid. Three figures for the hydroxide titration of 0.2 mol�L-1 triprotic model acid with pKa

values of 3, 6, and 9 show pH values as a function of added hydroxide, concentration

quotients {-log10 (Q)} as a function of ionic strength (I), and concentrations of H3A,

H2A-, HA2- and A3- as a function of pH.
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